Diagnosis From A Photo

Posted by

Bez tytułu1

Purdue University researchers are developing a smartphone app that can accurately extract information about a person’s blood hemoglobin content from a photo of the inner eyelid.

Engineers have developed software that would enable medical staff to take a picture of a patient’s inner eyelid with a smartphone and instantly receive a near-accurate count of hemoglobin, a protein in red blood cells.

The team is working on embedding the software into a mobile app, which is in development.

The app could help bring sooner diagnoses and treatment or allow a person to better manage a blood disorder from home. It also would help clinics in developing countries to better treat patients without the infrastructure to provide blood tests.

“This technology won’t replace a conventional blood test, but it gives a comparable hemoglobin count right away and is noninvasive and real-time,” said Young Kim, an associate professor of biomedical engineering at Purdue. “Depending on the hospital setting, it can take a few hours to get results from a blood test. Some situations also may require multiple blood tests, which lead to more blood loss.”

Bez tytułu2
Sang Mok Park gathers data from patients in Kenya who were referred for blood hemoglobin tests. The data helped to develop an algorithm that uses information from a patient’s inner eyelid to report a near-accurate hemoglobin count.

The method is a portable version of a commonly-used technique, called spectroscopic analysis, that detects hemoglobin by the specific way that it absorbs visible light. The resulting spectrum of light signals accurately gives a measure of blood hemoglobin content.

Kim’s team developed an algorithm that uses an approach known as super-resolution spectroscopy to convert low-resolution smartphone photos to high-resolution digital spectral signals. Another computational algorithm detects these signals and uses them to quantify blood hemoglobin content.

“The idea is to get a spectrum of colors using a simple photo. Even if we had several photos with very similar redness, we can’t clearly see the difference. A spectrum gives us multiple data points, which increases chances of finding meaningful information highly correlated to blood hemoglobin level,” said Sang Mok Park, a Purdue Ph.D. candidate in biomedical engineering.

Compared to spectroscopic analysis, the smartphone app wouldn’t require any extra hardware to detect and measure hemoglobin levels.

The app in development includes several features designed to stabilize smartphone image quality and synchronize the smartphone flashlight to obtain consistent images. It also provides eyelid-shaped guidelines on the screen to ensure that users maintain a consistent distance between the smartphone camera and the patient’s eyelid.

“The app also wouldn’t be thrown off by skin color. This means that we can easily get robust results without any personal calibrations,” Park said.

In a separate clinical study, the team is using the app to assess blood hemoglobin levels of cancer patients at the Indiana University Melvin and Bren Simon Comprehensive Cancer Center. The researchers also are working with the Shrimad Rajchandra Hospital to develop a better algorithm for hospitals and frontline healthcare workers in India.

Source: Purdue University


I have a small favour to ask…

This content is free of charge. This website is free of commercials. Please support aboutDigitalHealth.com (€1+). It only takes a minute. Thank you!

€1.00

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s